Effective semi-analytic integration for hypersingular Galerkin boundary integral equations for the Helmholtz equation in 3D

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simple Error Estimators for the Galerkin BEM for some Hypersingular Integral Equation in 2D

A posteriori error estimation is an important tool for reliable and efficient Galerkin boundary element computations. For hypersingular integral equations in 2D with positive-order Sobolev space, we analyze the mathematical relation between the h − h/2error estimator from [18], the two-level error estimator from [22], and the averaging error estimator from [7]. All of these a posteriori error e...

متن کامل

A Fast Solver for Boundary Integral Equations of the Modified Helmholtz Equation

The main purpose of this paper is to develop a fast fully discrete Fourier– Galerkin method for solving the boundary integral equations reformulated from the modified Helmholtz equation with boundary conditions. We consider both the nonlinear and the Robin boundary conditions. To tackle the difficulties caused by the two types of boundary conditions, we provide an improved version of the Galerk...

متن کامل

Sharp High-Frequency Estimates for the Helmholtz Equation and Applications to Boundary Integral Equations

We consider three problems for the Helmholtz equation in interior and exterior domains in R, (d = 2, 3): the exterior Dirichlet-to-Neumann and Neumann-to-Dirichlet problems for outgoing solutions, and the interior impedance problem. We derive sharp estimates for solutions to these problems that, in combination, give bounds on the inverses of the combined-field boundary integral operators for ex...

متن کامل

The numerical solution of a nonlinear hypersingular boundary integral equation

In this paper we consider a direct hypersingular integral approach to solve harmonic problems with nonlinear boundary conditions by using a practical variant of the Galerkin boundary element method. The proposed approach provides an almost optimal balance between the order of convergence and the numerical effort of work to compute the approximate solution. Numerical examples confirm the theoret...

متن کامل

A fast numerical solution for the first kind boundary integral equation for the Helmholtz equation

The main purpose of this paper is to develop a fast numerical method for solving the first kind boundary integral equation, arising from the two-dimensional interior Dirichlet boundary value problem for the Helmholtz equation with a smooth boundary. This method leads to a fully discrete linear system with a sparse coefficient matrix. We observe that it requires a nearly linear computational cos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applications of Mathematics

سال: 2014

ISSN: 0862-7940,1572-9109

DOI: 10.1007/s10492-014-0070-6